Complete Reversal in Regioselectivity in the Baeyer–Villiger Reaction of an α -CF₃-Ketone and Theoretical Rationale for Axial Orientation of Sterically Demanding CF₃ Group at the Transition State

Yoshimitsu Itoh, Masahiro Yamanaka, and Koichi Mikami*

Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8552, Japan kmikami@o.cc.titech.ac.jp

Received September 22, 2003

ORGANIC LETTERS

2003 Vol. 5, No. 25 4803-4806

ABSTRACT

The regioselectivity of the Baeyer–Villiger reaction of α -CF₃-ketone is completely reversed from that in α -F_{eq}-ketone. Theoretical study rationalized that the reaction proceeds with the sterically demanding CF₃ group in an axial orientation by strong dipole interaction. The guiding principle that strong dipole interaction can overcome steric repulsion as a determining factor not only in regio- but also in stereocontrol is proposed.

The Baeyer–Villiger (B–V) reaction¹ has been widely employed in organic synthesis.² A two-step mechanism has been well accepted: (1) carbonyl addition of a peroxy acid to form a peroxy acid/carbonyl adduct, the Criegee intermediate³ and then (2) skeletal rearrangement of the Criegee intermediate. Many kinetic studies have shown that the rearrangement of the Criegee intermediate is a concerted process that is rate determining (Scheme 1).⁴

The stereoelectronic requirement for correct antiperiplanar alignment of the migrating substituent and the O-O bond of the leaving peroxyacid (e.g., $R'COO^-$) has been well

(2) Reviews: (a) Krow, G. R. Org. React. **1993**, 43, 251–798. (b) Renz, M.; Meunier, B. Eur. J. Org. Chem. **1999**, 737, 7–750. (c) Krow. G. R. In Comprehensive Organic Synthesis; Trost, B. M., Eds.; Pergamon: Oxford, 1991; Vol. 7, p 671.

10.1021/ol0358298 CCC: \$25.00 © 2003 American Chemical Society Published on Web 11/14/2003

accepted and referred to as the primary stereoelectronic effect (parentheses in Scheme 1):⁵ the migration of carbon **a** located in the correct antiperiplanar alignment by (i) a conformational

⁽¹⁾ Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899, 32, 3625-3633.

⁽³⁾ Criegee, R. Justus Liebigs Ann. Chem. 1948, 560, 127-135.

factor⁶ or (ii) a stereoelectronic factor by the dipole interaction of α -F_{eq} and the leaving peroxy acid⁷ (Figure 1).

Figure 1. Primary stereoelectronic effect in the Criegee intermediate of (i) Chandrasekhar's and (ii) Crudden's model.

On the basis of the result of Crudden's α -F_{eq}-ketone, one might predict that α -CF₃-ketones should provide a similar trend for migration of the CF₃-bearing carbon because of the equatorial orientation of the sterically demanding CF₃ group.⁸

Significantly, however, the B–V reaction of α -CF₃-ketone showed the opposite regioselectivity to that of α -F_{eq}-ketone. The B–V reaction of α -CF₃-cyclohexanone was examined using trifluoroperacetic acid (TFPA) as an oxidant. When α -CF₃-cyclohexanone was treated with TFPA and trifluoroacetic acid (TFA) in CH₂Cl₂, migration was observed only at the carbon without the CF₃ group to afford the product quantitatively (Scheme 2).^{9,10}

The regioselectivity was further examined with acidic or basic additives employing *m*CPBA as an oxidant,¹¹ because *m*CPBA alone gives only a trace amount of the product (8% after 3 days, Table 1, entry 1).¹² Indeed, the same regioselectivity was obtained with significant acceleration by the use of Sc(OTf)₃ (entry 4) or TfOH (entry 6), in particular.¹³

Therefore, we theoretically examined the rearrangement step to illustrate the origin of the regioselectivity of the B-V

Table 1. Effect of Various Additives in B-V Reaction of α -CF₃-Cyclohexanone

entry	additive [equiv]	time	1 [% yield] ^a	2 [% yield] ^a
1		3 days		8
2	NaHCO3 [2.0]	10 days		15
3	Yb(OTf)3 [1.2]	3 days		10
4	Sc(OTf)3 [1.2]	5 h		91
5	TFA [1.0]	2 days		11
6	TfOH [1.0]	1 h		91
^a Dete	ermined by ¹⁹ F NMR	using BTF	as an internal sta	andard.

reaction of an α -CF₃-cyclohexanone.¹⁴ The B–V reaction of α -CF₃-cyclohexanone by TFPA was examined at the MP2/ 6-31G**//HF/6-31G* level.^{15–17} As shown in Figure 2, there

Figure 2. Two types of the reaction model.

were a total of eight possible conformations in the chemical model of the rearrangement step with respect to the orientation (axial or equatorial) of the oxidant and CF_3 group and the regioselectivity of the migrating carbon (path *a* or *b*) (Figure 2). The relative energies are shown in Table 2, and

(13) Kotsuki, H.; Arimura, K.; Araki, T.; Shinohara, T. Synlett 1999, 462–464.

^{(4) (}a) Hawthorne, M. F.; Emmons, W. D. J. Am. Chem. Soc. **1958**, 80, 6398–6404. (b) Palmer, B. W.; Fry, A. J. Am. Chem. Soc. **1970**, 92, 2580–2581. (c) Mitsuhashi, T.; Miyadera, H.; Simamura, O. J. Chem. Soc., Chem. Commun. **1970**, 1301–1302. (d) Winnik, M. A.; Stoute, V. Can. J. Chem. **1973**, 51, 2788–2793. (e) Winnik, M. A.; Stoute, V.; Fitzgerald, P. J. Am. Chem. Soc. **1974**, 96, 1977–1979.

⁽⁵⁾ Correct antiperiplanar alignment of the lone electron pair of the hemiacetal oxygen and the migrating substituentes is also proposed for the migration step. (a) Noyori, R.; Sato, T.; Kobayashi, H. *Tetrahedron Lett.* **1980**, *21*, 2569–2572. (b) Noyori, R.; Kobayashi, H.; Sato, T. *Tetrahedron Lett.* **1980**, *21*, 2573–2576.

⁽⁶⁾ Chandrasekhar, S.; Roy, C. D. Tetrahedron Lett. 1987, 28, 6371–6372.

⁽⁷⁾ Crudden, C. M.; Chen, A. C.; Calhoun, L. A. Angew. Chem., Int. Ed. 2000, 39, 2852-2855

⁽⁸⁾ A-value: i-Pr ≈ 2.15 , CF₃ = 2.4–2.5, t-Bu > 4 (kcal/mol). Jensen, F. R.; Bushweller, C. H. *Adv. Alicycl. Chem.* **1971**, *3*, 139–195.

⁽⁹⁾ Typical experimental procedure using TFPA. To TFPA (0.2 mmol, 0.6 mL, prepared from trifluoroacetic anhydride and 60% aqueous H_2O_2) was added dichloromethane (0.4 mL) at room temperature. Then, 2-trifluoromethyl-cyclohexanone (16.6 mg, 0.1 mmol) was added to the mixture at this temperature. After the mixture was stirred for 16 h at this temperature, BTF (10 μ L, 0.082 mmol) was added. Spectral analysis by ¹⁹F NMR of the reaction mixture showed quantitative yield of 2-trifluoromethyl-6-hexanolide. The product could be isolated by silica gel column chromatography (CH₂Cl₂) in 89% yield.

⁽¹⁰⁾ In the case of α -CF₃-cyclopentanone, the reactivity was lower (78% yield; reaction time was 66 h) but with the same regioselectivity as α -CF₃-cyclohexanone. In the case of 7-trifluoromethyl-6-undecanone (a cyclic substrate), the reactivity was significantly lowered (8% yield; 4.2 equiv of TFPA was used, and the reaction time was 5 days), as usually observed in B–V reaction of acyclic ketone, but with the same selectivity as α -CF₃-cyclohexanone.

⁽¹¹⁾ Typical experimental procedure using *m*CPBA. To a solution of *m*CPBA (80% purity) (43.1 mg, 0.2 mmol) and TfOH (8.8 μ L, 0.1 mmol) in dichloromethane was added 2-trifluoromethyl cyclohexanone (16.6 mg, 0.1 mmol) at room temperature under an argon atmosphere. After the mixture was stirred for 1 h at this temperature, BTF (10 μ L, 0.082 mmol) was added. Spectral analysis by ¹⁹F NMR of the reaction mixture showed 91% yield of 2-trifluoromethyl-6-hexanolide.

⁽¹²⁾ Various oxidants (TBHP, aqueous H_2O_2 , *m*CPBA, H_3PO_5) were examined, but only *m*CPBA (8% yield) and H_3PO_5 (quantitative yield) gave the product.

Table 2. Relative Energies of CPs and TSs (kcal/mol)

Type I	E _{rel} [kcal/mol]		$E_{\rm rel}$ [kcal/mol]
CP1	0	TS1	24.8
CP2	3.4	TS2	26.2
CP3	1.3	TS3	28.3
CP4	1.4	TS4	23.7
Type II	$E_{\rm rel}$ [kcal/mol]		$E_{\rm rel}$ [kcal/mol]
Type II CP5	E _{rel} [kcal/mol] 0.6	TS5	E _{rel} [kcal/mol] 26.9
Type II CP5 CP6	<i>E</i> _{rel} [kcal/mol] 0.6 4.4	TS5 TS6	<i>E</i> _{rel} [kcal/mol] 26.9 26.3
Type II CP5 CP6 CP7	<i>E</i> _{rel} [kcal/mol] 0.6 4.4 2.7	TS5 TS6 TS7	<i>E</i> _{rel} [kcal/mol] 26.9 26.3 26.8
Type II CP5 CP6 CP7 CP8	<i>E</i> _{rel} [kcal/mol] 0.6 4.4 2.7 1.2	TS5 TS6 TS7 TS8	E _{rel} [kcal/mol] 26.9 26.3 26.8 24.7

the energy profiles of Type I are shown in Figure 3. The most stable Criegee intermediate was **CP1** ($CF_3 = eq$, oxidant = ax; path *a*), which causes the migration of the

Figure 3. Energy profiles of the B-V reaction at the rearrangement step at the MP2/6-31G**//HF6-31G* level (Type I). The numbers in parentheses are relative energy levels. The activation energies are in italics.

carbon-bearing CF₃ group as expected on the basis of the α -F_{eq}-ketone. In sharp contrast, the most stable transition state was **TS4** with a sterically demanding CF₃ group in axial orientation (oxidant = ax; path *b*) in agreement with the experimental result.¹⁸

Among the Criegee intermediates, **CP1** has the lowest energy and **CP2** has the highest one. As shown in Figure 4,

Figure 4. Three-dimensional structure of CP1, TS1, CP4, and TS4. The numbers are the distances in Å.

two CF₃ groups were located at a nearly 180° angle to stabilize **CP1** by dipole interaction in contrast to the nearly 0° angle in **CP2**. In addition, the hydrogen bonding between hemiacetal hydrogen and fluorine exists only in **CP1** but not in other **CPs**.¹⁹ Energy profiles of Type I series (Figure 3) could be sharply classified in path *a* (dotted line) and path *b* (solid line) in terms of the activation energy. The activation energy of path *a* is higher than that of path *b* because of the

⁽¹⁴⁾ There are some theoretical studies of the B-V reaction: (a) Stoute,
V. A.; Winnik, M. A.; Csizmadia, I. G. J. Am. Chem. Soc. 1974, 96, 6388-6393. (b) Hannachi, H.; Anoune, N.; Arnaud, C.; Lantéri, P.; Longeray,
R.; Chermett, H. J. Mol. Struct. 1998, 434, 183-191. (c) Cádenas, R.; Reyes,
L.; Lagúnez-Otero, J.; Cetina, R. J. Mol. Struct. 2000, 497, 211-225. (d)
Cárdenas, R.; Cetina, R.; Lagúnez-Otero, J.; Reyes, L. J. Phys. Chem. 1997, 101, 192-200. (e) Okuno, Y. Chem. Eur. J. 1997, 3, 212-218. (f) Eklund,
P. R.; Brinck, T. J. Org. Chem. 2001, 66, 1193-1199.

⁽¹⁵⁾ All calculations were performed using the Gaussian 98 program package (Gaussian, Inc.: Pittsburgh, PA, 1998).

⁽¹⁶⁾ Reference 14e was referred to in determining the calculation level. In reference 14e, the difference between HF/3-21G and MP2/6-31G* was examined in the case of the B-V reaction of formaldehyde by performic acid as the model study. The result of the structural difference was only 3%. Therefore, MP2/6-31G**//HF/6-31G* (higher level than HF/3-21G) was employed in this study.

⁽¹⁷⁾ Hehre, W. J.; Radom, L.; von Ragué Schleyer, P.; Pople, J. A. *Ab initio Molecular Orbital Theory*; Wiley: New York, 1986; see also references therein.

⁽¹⁸⁾ Attempt to lock the orientation of the CF_3 group by introducing bulky 'Bu at the 4-position of the cyclohexanone ring failed because of the rapid epimerization of the CF_3 group. (19) Length of H-F (2.06 Å) in **CP1** is shorter than the sum of H and

⁽¹⁹⁾ Length of H–F (2.06 Å) in **CP1** is shorter than the sum of H and F van der Waals radii (2.60 Å).

lower nucleophilicity of the carbon adjacent to the CF₃ group by the strong electron-withdrawing nature of the CF₃ group. Curtin—Hammet kinetics²⁰ should operate in the B–V reaction of the α -CF₃-ketone, and hence the reaction should occur via **TS4**. It is noted that the most stable **TS4** has the axial orientation of the sterically demanding CF₃ group, which is usually located in the equatorial orientation due to the 1,3-diaxial repulsion (Figure 4). The energy level of **TS2** with the CF₃ group in equatorial orientation is higher than that of **TS4**. This indicates that the strong dipole interaction between two CF₃ groups is more effective than the steric repulsion.

In summary, we have illustrated experimentally and theoretically that the B-V reaction of an α -CF₃-ketonic

substrate proceeded with regioselectivity opposite to that of α -F_{eq}-ketone. In addition, at the transition state, the sterically demanding CF₃ group is oriented in the axial position due to the strong dipole/dipole interaction of the two CF₃ groups.²¹ Thus, we might propose the guiding principle that the dipole interaction can overcome the steric repulsion in the transition state for regio- or stereoselective reaction.

Acknowledgment. Generous allotment of computational time from the Institute for Molecular Science, Okazaki, Japan, is greatly acknowledged.

Supporting Information Available: NMR spectral data of the B–V product, a detailed experimental procedure, and Cartesian coordinates of the calculation model. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0358298

^{(20) (}a) Curtin, D. Y. *Rec. Chem. Prog.* **1954**, *15*, 111–128. (b) Eliel, E. L.; Wilen, S. H.; Mander, L. N. *Stereochemistry of Organic Compounds*; Wiley: New York, 1994; p 648 and references therein.

⁽²¹⁾ Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, in press.